
.
',

Faults Discovery By Using Mined Data

Charles Lee
SAIC

NASA Ames Research Center
Moffett Field, CA. 94035

clee@ mail.arc.nasa.gov
650-604-6054

Abstrucr-Fault discovery in the complex
systems consist of model based reasoning, fault
tree analysis, rule based inference methods, and
other approaches. Model based reasoning builds
mdeis for the systems either by inathematic
formulations or by experiment model. Fault Tree
Analysis shows the possible causes of a system
malfunction by enumerating the suspect
components and their respective failure modes
that may have induced the problem. The rule
based inference build the model based on the
expert knowledge. Those models and methods
have one thing in common; they have presumed
some prior-conditions. Complex systems often
use fault trees to analyze the faults. Fault
diagnosis, when error occurs, is performed by
engineers and analysts performing extensive
examination of all data gathered during the
mission. International Space Station (ISS)
control center operates on the data feedback from
the system and decisions are made based on
threshold values by using fault trees. Since tiose
decision-making tasks are safety critical and
must be done promptly, the engineers who
manually analyze the data are facing time
challenge. To automate this process, this paper
present an approach that uses decision trees to
discover fault from data in real-time and capture
the contents of fault trees as the initial state of
the trees.

1. INTRODUCTION

Decision trees (also called classification trees)
are the binary tcees built from data samples and
can classify the objects into different classes. In
our case, the decision trees can classify different
fault events or normal events. Given a set of data
samples, decision trees can be built and trained,
and then by running the new data through the
trees, classification and prediction can be made.

In this way, diagnostic knowledge for fault
detection and isolation can be represented as
diagnostic rules; we call this tree the diagnostic
decision tree(DDT). By showing the fault path
in decision trees, we also can point out the root
cause when a fault occurs. Since all the
procedures and algorithms are available to build
decision trees, the trees built are cost effective
and time effective. Because the diagnostic
decision trees are based on available data and
previous knowledge of subsystem logic, the
DDT can also be trained to predict faults and
detect unknown faults. Based on this, the needs
for on-board real time diagnostics can readily be
met. Diagnostic Decision Trees are built based
on the fault trees as static trees that serve as the
fundamental diagnostic trees, and the dynamic
DDTs are built over time from vehicle telemetry
data. The dynamic DDT will add the
functionalities of prediction, and will be able to
detect unknown faults. Crew or maintenance
engineers can use the decision tree system
without having previous knowledge or
experience about the diagnosed system. To our
knowledge, this is the first paper to propose a
solution to build diagnostics decision trees from
fault trees, which convert the reliability analysis
models to diagnostic models. We show through
mapping and ISS examples that the approach is
feasible and effective. We also present future
work and development.

Detect faults in a complex system requires
complex diagnostic tools. Fault tree is one of
those tools to be used for analyzing and
diagnostic fault. The fault tree concept was
introduced by Bell Telephone Laboratories in
1962 for the U.S. Air Force for use with the
Minuteman system [SI. It was later adopted and
extensively applied by the Boeing Company and
is one of the most widely used methods in
system reliability analysis for a long time [4]. It
is a deductive procedure for determining the

1

various combinations of hardware and software
failures and human errors that could result in the
occurrence of specified undesired events
(referred to as top events) at the system level. As
part of the analysis, the minimal cut sets of a
fault tree can be determined [3], and then fault
trees can be built. Individual fault trees can be
visualized and drawn. Fault trees are usually
individually built for each part of the system for
each top event. It is hard to have generic
software to traverse fault trees. On the other
hand, the decision trees are matured data
structures and it is very easy to be' manipulated
in a software program. Using decision trees to
represent fault trees will increase the operability
and decrease response time for system
diagnostics, and furthermore, will make it easier
for users to visuaiize the root cause of the fault
and path from which the fault came. The high
availability of many different tree algorithm
implementations in the computer science field
makes using decision tree to manage the fault
trees one of best approaches. In this paper, we
present a method to convert existing fault trees to
decision trees. More general ways of
constructing decision trees are presented. The
method is easy to program and run on a
computer since the decision tree algorithms have
many available implementations [5]. This
method also provides a good tool for researchers
on simulation and prediction tasks. By using this
method, one can analyze data samples from the
past and categorized them into different classes;
abnormal, normal, and fault events in such a way
that future faults can be predicted from the past.
This could be a data mining components with
run time updating processes. Such an artificial
intelligent application is presented in the paper as
a form of framework architecture.

2. DETECT FAULTS FROM DATA

Using decision trees, we can detect fault from
data by monitoring the data values and compare
to the fault patterns. When we do not have the
fault patterns at beginning of the system, we
need to set up initial trees with results of fault
analysis of static system. Usually we can have
initial fault trees. Then we can migrate the fault
trees to decision trees. We also can build
decision trees from events and telemetry data
during run time when real data is coming in. The
decision trees converted from fault trees could be
used as diagnostic tools. When fault happened,

we can recognize the fault by running telemetry
data through the trees and finding out where the
data stops. Also, the type of fault can be
categorized and its path can be determined by
such trees. Other applications are also possible
by utilizing decision trees. Once we know that
the decision tree is very well suited for data
mining tasks, we can apply our trees to a data
mining application targeting at recognizing fault
patterns and do early fault detection and
prediction. Data mining is the process of
analyzing data from different perspectives and
summarizing it into useful information. It allows
users to analyze data from many different
dimensions or angles, categorize it, and
summarize the relationships identified. In our
case, it is the process of finding fault patterns. A
design modei, ais0 we can call it a framework
model, is presented in Figure 1. In the figure, we
can see how the hybrid decision trees, in this
case it a kind of fault decision tree, fit into the
knowledge discovery part of the data mining
process [7]. Initially, the trees are built for
known fault. For example, the initial trees
converted from fault trees. Then we have on
going decision trees building processes on real
time data when the system is running. While we
know the fault trees could not be developed run
time and could not be used in such application,
the decision trees are so easy to be fit into such
an application. We can build such a tree that
records fault patterns each time a fault event
occurs. Especially, we record the fault trends
patterns so we can use such trees to recognize a
fault in its early stages.

2

Figure 1 Decision trees in fault
discovery application

3. CONVERSION METHOD

There are some other attempts to represent fault
trees by other forms; one of them is building
diagnostic maps from fault trees [2]. Decision
trees are trees usually built from data. Let’s look
at a fault tree and see how can we map it to the
decision tree. Take a sample fault tree in the
form of following:

over voltage

A

Figure 2 Over Voltage Event Fault Tree

We have 6 inputs to the tree. The inputs remain
the same for the decision tree. The corresponding
decision tree should have the same functionality
in terms of samples inputs and fault triggers. In
the other words, the same inputs to the fault tree,
or to the decision tree will have the same result.
The corresponding tree can be built as in Figure
3. If by applying the telemetry data one can
propagate all the way to terminal node 6, we
know that the system is at an over voltage fault.
The decision tree not only provides the final
result if the system is at fault status, it can also
provides the interim status by looking at where
the sample data end up. To ease the decision tree
generation and notation, we give the signals
short names as follows:

Consecutive readings = ct; Voltage A over trip
point 129 = Ua; Validity UaA = UdA; Reconfig
deactive = Config; Voltage B = Ub; Validate Ub
= UdB.

Ub<=lO

UdB=
0

Figure 3 Decision Tree for Over Voltage

To show a more common case that includes an
OR gate in the fault tree, the other example is
shown below:

Fram count

Fail to change m 4 seco
GNC enabled

3 seconds

Figure 4 GNC Fail Event Fault Tree

Similarly, we represent the signals in short
notations. Frame count = Fc; Fail to change in 4
seconds = Fc4; GNC enabled = GNCe; SM loss
conn = Smloss; 3 second = SM3. In this case,
more balanced data inputs will end up with more
evenly distributed decision trees. In the same
way as we showed earlier, the corresponding
decision tree is presented as follows:

3

a=f& s /lloss=O

Figure 5 Decision Tree for GNC Fail

We had demonstrated that fault trees can be
mapped to decision trees with examples of the
over voltage and GNC fail fault trees. The
convenience use of decision tree use is that the
available decision tree software programs can
easily pin point a root cause of an event (
including fault event) by recording the edges in
the path of the tree when giving reports and
evaluation of the system status. For more general
purposes and for ease of illustration, we can
abstract the information into a map and construct
a decision tree from this map. The map basically
represents the different events, including fault
events, in the n dimension space. When we deal
with decision trees, we call the events classes.
The class could be fault, nominal, or warning etc.
This demonstration shows that the decision tree
not only can be derived from the fault tree but
also can be constructed from data samples,
which is very useful in real time fault detection
and prediction.

1 , I I I I I

I I I 1.1 I
S

S

I I I I I
I I I I

0 Si s* s3 s, s,

Figure 6 Class distributions

To map to the decision tree, we use an example
to explain it. We assume faults in the two
dimension space for simplification of
visualization. Multiple dimensions will follow
the same rules. In Figure 5, we give an example
of the fault scenarios, the triangles represent
normal, called Class 1 and squares represent
faults, called Class 2. We will use cumulative
distribution function (c d ! for tree construction.
The cd'is the probability that the variable takes a
value less than or equal to x. That is

F (z) = P'[X 5 4 = N (1)

This can be expressed mathematically for
continuous distribution:

For a discrete distribution, the cdfcan be
expressed as

2

When we construct a decision tree, we have a
root, then we have two branches, further, each of
those branches can, have a maximum of two
branches, until no further branches can be
constructed and we reach the bottom of the tree
and we are done. Those procedures could be said
in another way; we are splitting the data until it
couldn't be split any more. So what we need is

4

information on where to split, and when do we
stop splitting. With the method of accumulated
distribution function, we construct the trees
using the following steps. First, calculate the cdf
for each class. Second, compare the result for
each class at all the points. Third, the largest
value will be picked and the maximum value
of x will be the split point.. Repeat first to third
step until no more points to split remain. In the
example, we calculate the cdffor each class as a
function of each attribute (see Figure 5), and then
pick the split point where the difference of the
two cdfvalues is maximum.

Figure 7 Calculate split point by using
C d f 4 1)

We repeatedly split until all samples in a node
are of the same class. In Figure 6, the horizontal
axis is the possible split points s, 1 < i <= 5
corresponding to the x-axis in Figure 6, and the
vertical axis is the value of the cdffor each class.
In Figure 6 fi is the cdf value for class 1

(cylinders) and f, is the cdf value for class 2
(cubes).
In Figue 6, the vertical axis is the possible split
points. S, 5 < i <= 10 corresponding to the y-
axis in Figure 6, and the horizontal axis is the
value of the cdffor each class. In Figure 6 f, is
the cdfvalue for class 1 (cylinders) and f, is the
cdf value for class 2 (cubes). The purpose is to
find the point where the distance between fi

and f, is the maximum. To calculate the cdf,

we used the estimated function n, / N , . The
total number of samples in class 1 is 6, and in
class 2 is 4. N , = 6 and N , = 4. As shown in

Figure 5 at split point SI , we have t h e 5 value

of 1/6, and f, value of 0. At split point s, we

have the f, value of 216, and af2 value of 1/4.

At split point s, we have the f, value no

change, still 216 or 113, and a f, value of 214 or

1/2. At split point S4 we have the f, value of

112 and a f, value of 314. At split point s, we

have the f, value of 516 and a f, value of no
change, 3/4.
Similarly in Figure 8 at split s, the value of f,
is 1/6 and f, is 0. At split point s, we

s6 s7L 0 Cdf

Figure 8 Calculate Split Point Using cdf(2)

have the f, value of 316, and a f i value of 0.

With the same calculations, at split point s, we

have the f , value of 416 and a fi value of 0.

Again, at split point s, we have the f, value of

516 and a f, value of 1/4. At split point SI,,

we have the f, value of 1 and a f, value of
214.

From Figures 7 and 8, we can see that the split Sa
has the maximum distance (416) between f, and

f, among all others. Therefore, we pick the

first split point as s, . After we split the set on

s, , we have two subsets, one of the subsets has
only class 1 in it, and so we don’t need to do the
further split on this subset. But on the other
subset, we will repeat the same calculations on
the remaining samples to find the further split
points. The procedures to calculate the cdf and

5

select the maximum distance between f , and

f, are the same as above. The constructed tree is
shown in Figure 9.

A-
Figure 9 Final Decision Tree

When the real time data comes in, we let them
propagate through the decision tree that we
constructed. The faults are detected and
classified when the data samples fall into a fault
class at the terminal node. To illustrate how the
fault happened, we can show the fault mode by
tracking the path that the data went through.
Visualization of the path with a distinctive color
or shape will show the user the clear cause of the
fault.

This method not only can apply to the
conversion of the fault trees to decision trees, it
can also construct decision trees from data
samples at run time during operation of ISS over
time. By simply selecting a set of data samples
from time to time, we can build decision trees
dynamically. In later time, the built decision
trees can be used to compare the new data to the
old data and to predict future faults. The best use
of such trees is to build trees by applying
grouped fault scenarios and then applying real
time data to the tree to compare the pattern to
know fault patterns, faults can be detected when
a pattern is matched.

4. CONCLUSION

of faults is easier and that tree manipulation
becomes more programmatic via available
decision tree programs. The visualization of
decision trees for diagnostics shows a format that
is straightforward and easy to understand. For
ISS real time fault diagnostics, the status of the
systems could be shown by running the signals
through the trees and watching where it stops.
The other advantage to using decision trees is
that the trees can learn the fault patterns and
predict future faults from the historic data. The
learning is done not only on the static data sets
but also can be runtime; through accumulating
the real time data sets, the decision trees can gain
and store faults patterns in the trees and
recognize them when they reoccur. The decision
tree plays the role in howledge discovery while
the fault tree could not.

5. FUTURE DEVELOPMENT

This paper presented the method to migrate the
fault trees to decision trees, which lays a good
foundation for using data mining technique in
advanced diagnostic systems. The next step will
naturally fall to a project to implement data
mining software for fault detection, prediction,
and analysis. Such software will use the decision
trees as an engine inside of the diagnostic system
application. This engine will be able to gain
knowledge of fault patterns then recognize them
when they reoccur.

We started from ISS fault tree examples to
migrate to decision trees by presenting a method
for converting fault trees to decision trees. The
method shows that the visualization of root cause

6

“ ” .

REFERENCE:

[l] Ramesh K. Rayudu, Sandhya
Samarasinghe, and Don Kulasiri, “A
Comparison of Model-based Reasoning
and Learning Approaches to Power
Transmission Fault Diagnosis,” 2nd New
Zealand Two-Stream International
Conference on Artificial Neural
Networks and Expert Systems (ANNES
‘93, pp 218, 1995.

[2] Tariq Assaf and Joanne Bechta Dugan,
“Automatic generation of diagnostic
expert systems from fault trees,”
Reliability and Maintainability
Sdynposium, January 2003.

[3] Zhihua Tang and Joanne Bechta Dugan,
“Minimal Cut Set and Sequence
Generation for Dynamic Fault Trees,”
Reliability and Maintainability
Symposium, January 2004.

[4] Joanne Bechta Dugan, “Software system
analysis using fault trees,” Chapter 15,
Handbook of Sofhyare Reliability
Engineering, editor M R Lyu, E E E
Computer Society Press, McGraw-Hill
Publication 1996.

[5] J. R Quinlan, Induction of Decision
Trees, Machine Learning, v.1 n.1, p.81-
106, 1986

[6] Ping. Li, Richard. E. Haskell, Darrin. M.
Hanna, “Optimizing Fuzzy Decision
Tree by Using Genetic Algorithms,”
Proceedings of the International
Conference on Artificial Intelligence,
June, 2003, Las Vegas, USA

[7] Olaru, C. and L. Wehenkel, Data
Mining. IEEE Computer Applications in
Power, 1999.12(3): p. 19-25.

[9] Leiguang Gong, Doug Riecken,
“Constraining Model-based reasoning
using context,”, I E m C International
Conference on Web Intelligence (WI‘O3),
pp 507, October 13 - 17, 2003 Halifax,
Canada

[8] N. H. Robert and D. F. Haasl, Fault
Tree Handbook, National Technical
Information Service, Springfield, VA,
1981

7

